
DATA-DRIVEN BACKWARD CHAINING 1

Paul Haley
The Haley Enterprise, Inc.
413 Orchard Street
Sewickley, PA 15143
USA
(412) 741-6420

Abstract: CLIPS cannot effectively perform sound and
complete logical inference in most real-world contexts.
The problem facing CLIPS is its lack of goal generation.
Without automatic goal generation and maintenance,
Forward chaining can only deduce all instances of a
relationship. Backward chaining, which requires goal
generation, allows deduction of only that subset of what
is logically true which is also relevant to ongoing problem
solving.

Goal generation can be mimicked in simple cases using
forward chaining. However, such mimicry requires
manual coding of additional rules which can assert an
inadequategoal representation foreverycondition inevery
rule that can have corresponding facts derived by
backward chaining. In general, for N rules with an average
of M conditions per rule the number of goal generation
rules required is on the order of N*M. This is clearly
intractable from a program maintenance perspective.

We describe the support in Eclipse for backward chaining
which automatically asserts goals as it checks rule
conditions. Important characteristics of this extension are
that it does not assert goals which cannot match any rule
conditions, that 2 equivalent goals are never asserted, and
thatgoals persistas long as, butno longer than, they remain
relevant.

Introduction
Suppose we were developing an application concerning

genetically transmitted traits. Our application might need
several rules that guided its reasoning. One such rule might
be, "if a person has a trait and a cousin of that person has the
same trait, then consider the possibility that the trait is
inherited." Such a rule might be coded as follows:

(defrule cousins-may-inherit-trait
(has ?grandchild-1 ?trait)
(parent ?grandchild-1 ?parent-1)
(parent ?parent-1 ?grandparent)
(parent ?parent-2 ?grandparent)
(parent ?grandchild-2 ?parent-2)
(has ?grandchild-2 ?trait)
=>
(assert (inherited (status possible) (trait

?trait)))
)

This is a fine rule when viewed in isolation. However,
there are probably lots of rules in this application that examine
conditions across siblings. All of these rules will share
conditions similar to:

(parent ?parent-1 ?grandparent)
(parent ?parent-2 ?grandparent)

This amounts to a low-level encoding of the notion of a
sibling. The following conditions amount to a low-level
encoding of the notion of a cousin:

(parent ?grandchild-1 ?parent-1)
(parent ?parent-1 ?grandparent)
(parent ?parent-2 ?grandparent)
(parent ?grandchild-2 ?parent-2)

In an application of hundreds of rules that consider blood
relationships in many different ways and combinations,
having notions of "sibling" and "cousin" available as simple
relationships rather than as more complex pattern matching
operationsnotonlymakes therules moreperspicuous, itmakes
them more reliable and easier to maintain. As an example, the
above rule could be recoded as:

(defrule cousins-may-inherit-trait
(has ?x ?trait)
(cousin ?x ?y)
(has ?y ?trait)
=>
(assert (inherited (status possible) (trait

?trait)))
)

(defrule cousin
(parent ?x ?parent-1)
(sibling ?parent-1 ?parent-2)
(parent ?y ?parent-2)
=>
(assert (cousin ?x ?y))
)

(defrule sibling
(parent ?x ?parent)
(parent ?y&~?x ?parent)
=>
(assert (sibling ?x ?y))
)

Deduction using Forward Chaining

The cousin and sibling rules above make the high-level
semantics of cousin and sibling explicit while in the original
rule they were implicit. With these relations made explicit,
coding of all rules that consider these relations can use a single
pattern rather than its corresponding, implicit, constituent
patterns.

Reducing the number of patterns per rule clearly improves
the reliability of those rules. Also, maintaining rules that use
the more abstract patterns is simplified since only the rules
that maintain the relevant relation need to be modified.
Furthermore, if a relation can be deduced by any of several
methods (i.e., disjunction occurs) then the number of rules is
reduced with resulting improvements in performance and
reliability. Finally, using relations rather than unshared joins
over several patterns can dramatically improve performance
and reduce space requirements.

The problem with the above sibling and cousin rules is that
theywill asserteverycousin and sibling relationship that exists
given a set of parent relationships. The number of these
deduced relationships can become very large, especially for
the cousin relationship.

1 Published in the Proceedings of the Second Annual CLIPS Conference, NASA Johnson Space Center, Houston TX, September 1991



This is a fundamental problem. For most domains, there
are at least an infinite number of irrelevant truths that can be
deduced. The challenge in building a rational problem solving
system is to actually deduce truths that are (or have a good
chance of being) relevant to the problem at hand.

Deduction using Backward Chaining
Focusing deduction such that it furthers problem solving,

rather than merely deducing irrelevant truths, is often done by
generating subgoals during problem solving. Goals are
generated as the conditions of rules are checked. These goals
then trigger the checking of rules that might deduce facts that
would further the matching of the rule which generated the
goal.

To be more concrete, the cousin and sibling rules from
above could be recoded as:

(defrule cousin
(goal (cousin ?x ?y))
(parent ?x ?p1)
(parent ?y ?p2)
(sibling ?p1 ?p2)
=>
(assert (cousin ?x ?y))
)

(defrule sibling
(goal (sibling ?x ?y))
(parent ?x ?parent)
(parent ?y ?parent)
=>
(assert (sibling ?x ?y))
)

In these rules, one of the goal conditions is triggered when
a goal to establish a cousin or sibling relationship is generated.
The actions of these rules assert facts which satisfy the goals,
thereby deducing only facts which might further the matching
of the rules which led to the goals’ generation.

We call the above rules data-driven backward chaining
rules. Of course, for these rules to be driven some goal data
is required. Either other rules or the inference engine
architecture itself must assert these goals. In either case, goals
must be generated as if by the following rules:

(defrule
cousins-may-inherit-trait-goal-generation-1

(has ?x ?trait)
=>

(assert (goal (cousin ?x ?y)))
)

(defrule cousin-goal-generation-1
(goal (cousin ?x ?y))
(parent ?x ?p1)
(parent ?y&~?x ?p2)
=>
(assert (goal (sibling ?p1 ?p2)))
)

Manual Goal Generation
The above goal generation rules, if they could be

implemented, would correctly generate the goals required to
implement the explicit cousin and sibling relations using the
previously mentioned data-driven backward chaining rules.
However, beyond the need for an adequate representation for
goals, the manual coding of goal generation rules would
remain problematic.

In general, for a rule of N conditions, N+1 rules will be
needed to implement those rules such that they can support
sound and complete reasoning. The original rule which
matches in the standard,data-driven, forwardchaining manner
is, of course, required. An additional rule per condition is

needed to assert the goals that will allow backward chained
inference to deduce facts that will further the matching of the
original rule.

Clearly, multiplying the number of rules required by one
plus the average number of goal generating conditions per rule
is unacceptable. Even if the effort is made, it is extremely
error prone. Even automating the maintenance of goal
generation rules would increase space and time requirements
significantly, just to encode the actions and names of the rules
and to activate the rules and interpret their actions.

Representing Goals
Even though manual coding of goal generation is

impractical, CLIPS, OPS5, and many other production system
languages are unable to implement the above rules for several
even more fundamental reasons. The most obvious reason is
that they provide no capability for distinguishing facts from
goals. Moreover, these systems provide no means of
representing unspecified values (for unbound variables) that
occur in the conditions for which they might otherwise assert
goals. For example, the following goal generation rule, in
which the variable ?y is unbound, cannot even be simulated
without explicit support for goals which include universally
quantified values:

(defrule
cousins-may-inherit-trait-goal-generation-1

(has ?x ?trait)
=>

(assert (goal (cousin ?x ?y)))
)

Even supporting universally quantified values within
goals is not enough to support backward chaining, however.
If the variable ?y in the first condition of the following rule
matches a literal value, CLIPS or OPS5 extended to support
goal generation could function properly. If, however, ?y
matches a universally quantified value, then neither CLIPS or
OPS5 could join that unbound variable with any parent fact
corresponding to the third condition, as would be logically
required.

(defrule cousin-goal-generation-1
(goal (cousin ?x ?y))
(parent ?x ?p1)
(parent ?y&~?x ?p2)
=>
(assert (goal (sibling ?p1 ?p2)))
)

Clearly these systems are unable, not only to generate
goals in the first place, but also to join those goals with facts.

Automatic Goal Generation
Eclipse is a syntactically similar language to NASA’s

CLIPS and Inference Corporation’s ART-IM, each of which
include functionality similar to that of OPS5. Of these
languages, only Eclipse supports a goal database and
automatic generation of goals. In fact, the above
pseudo-CLIPS rules which reference goals in their conditions
and which assert facts are legal Eclipse rules. However,
Eclipse does not require the addition of goal generation rules.

Eclipse automatically asserts goals precisely as would the
goal generation rules described earlier. Goal generation in
Eclipse adds no scheduling or interpretive overhead. There is
no space overhead per rule or condition that generates a goal.
Moreover, Eclipse goals can represent and include universally
quantified (or unbound) values. Eclipse also supports the
unification of universally quantified values with literals that
occur in facts.



Goals as Data
Procedural backward chaining languages, such as Prolog,

do not represent goals as data. In Prolog, goals are equivalent
to procedure calls, if an invoked goal procedure fails the goal
cannot be achieved. Moreover, in Prolog, if a goal fails at the
time it is initially pursued, it will not be achieved unless a new
and equivalent goal is reestablished. Thus, Prolog would fail
to deduce a sibling relationship if a goal were established
before a relevant parent relationship were known.

In Eclipse, goals are represented as propositions in a
database. By representing goals as data and allowing patterns
to distinguish facts from goals, Eclipse allows goals to drive
pattern matching in combination with facts in the normal,
data-driven manner. By representing goals in a database
several goals can exist simultaneously and each goal can
persist even if - at the time it is generated - it cannot be
achieved. Thesimultaneousexistence ofmultiplegoals allows
rules to do strategic reasoning and planning which is not
possible if only one goal at time can be considered. The
persistence of goals allows goals to be achieved
opportunistically. UnlikeProlog, ifEclipse generatesasibling
goal which cannot be established, subsequent assertion of a
relevant parent relationship would result in proper deduction.

Goal Maintenance
Eclipse also supports truth maintenance. In its standard

application, truth maintenance allows a fact to be givena prior
and/or supported by a disjunction of facts or sets of data which
satisfy all or part of the conditions of one or more rules. For
example, the following rule would make fact C logically
dependent on the fact A and the absence of fact B2:

(defrule A-and-not-B-implies-C (A) (not (B))
=> (infer (C)))

Subsequent retraction of A or assertion of B would lead
to the retraction of the match for rule A-and-not-B-implies-C
which would support the inference of C. If this support is
removed, C (which we assume has not been asserted without
logical dependency) would no longer be logically grounded
and would therefore be automatically retracted.

In effect, Eclipse goal generation behaves as the goal
generation rules described earlier using these logical
dependencies. That is, if the following rules lead to the
generation of a (goal (D)) after the assertion of A:

(defrule A-and-D-implies-C (A) (D) => (infer
(C)))
(defrule D-is-implied-by-A (goal (D)) (A) =>
(infer (D)))

and A is subsequently retracted, the (goal (D)) will also
be automatically retracted.

Using dependencies on goals results in a number of
functional advantages. The most immediately obvious
advantage is that goals only persist as long as they are relevant.
This is another advantage over attempting to assert and
maintain a crude representation of goals using OPS5 or CLIPS
whichdo not support suchdependencies. Secondly, if the facts
inferred by goals are made to depend on the continued
existence of those goals, then facts which were deduced but
which subsequently become irrelevant to the ongoing process
of problem solving are automatically retracted from the
database. The automatic maintenance of deductions versus
goals frequently improves performance and certainly reduces
the need for manual coding of "cleanup" rules.

Goal Canonicalization
It is common forseveral rules to generate equivalent goals.

For example, the following rules would both generate (goal
(C ?1)) given facts A and B3:

(defrule A-and-C (A) (C ?x) =>)
(defrule B-and-C (B) (C ?x) =>)

Just as asserting equivalent facts twice results in one fact,
so does the generation of two goals from these two rules result
in only one goal. This one goal will have two sources of
support. Removing one source of support will not result in
the automatic retraction of the goal. Eclipse automatically
maintains goals only as long as they are relevant by allowing
a goal to persist only as long as at least one of the reasons for
its generation persists.

An Example of Opportunistic Forward and
Backward Chaining in Eclipse

Inwhat follows we givean extensive trace and explanation
of the simple genetic trait rules discussed earlier.

Givenanempty database, firstassert thatJohnhas freckles:
==> f-1 (has John freckles)

The above fact matches the first condition of the first rule.
This causes a goal for the second condition of that rule, given
John, to be generated as follows:

==> g-1 (cousin John ?1) by for 1 of
cousin-may-inherit-trait f-1

This goal in turn matches the first condition of the cousin
rule. However, since we do not know either of John’s parents,
the rule cannot apply... yet. Unlike Prolog and other
procedural backward chaining languages, using a declarative
representation for goals (rather a function-call semantics)
allows the goal to persist in a database. In fact, representing
goals as data allows an application to consider multiple goals
thatexist in the databaserather than focussolelyand ignorantly
on only the most recently generated goal pushed onto a stack.

At this point then, a fact and a goal exist in the database.
By asserting one of John’s parents, problem solving can
continue in the light of the established and outstanding goal.

==> f-2 (parent John George)

This parent fact matches the second pattern of the cousin
rule and satisfies the mutual occurrence constraint on "John"
given the outstanding goal. This leads to a match for the first
two conditions:

==> thru 2 of cousin g-1,f-2

which results in a goal to establish facts which satisfy the
third condition of the cousin rule given John’s parent, George:

==> g-2 (sibling George ?1) by thru 2 of cousin
g-1,f-2

Again, none of George’s parents are known so problem
solving cannot proceed. Note that at this time two facts about
John having freckles and his father, George, and two goals
exist in the database. By establishing one of George’s parents,
problem solving gets a little bit further:

==> f-3 (parent George Adam)

This fact, given the goal to determine George’s siblings,
matches the first two conditions of the sibling rule.

==> thru 2 of sibling g-2,f-3

2 Under the closed-world assumption, absence of a fact is equivalent to a fact being false.

3 The ?1 denotes the first universally quantified value in a goal.



Again, problem solving cannot proceed since no other
offspring of Adam are known. If we also identify Sally as a
child of Adam’s:

==> f-4 (parent Sally Adam)

then the third and final condition of the sibling rule is
satisfied for George, Sally, and their mutual parent, Adam.

==> thru 3 of sibling g-2,f-3,f-4
==> activation 0 sibling g-2,f-3,f-4

Executing this rule asserts the sibling relation between
George and Sally:

==> f-5 (sibling George Sally)

which in turn satisfies the goal and matches condition 3 of
the cousin rule.

==> thru 3 of cousin g-1,f-2,f-5

Once again, problem solving halts, however, since no
children of Sally are known. By asserting a child for Sally,

==> f-6 (parent Mary Sally)

the fourth and last condition of the cousin rule is satisfied
for John given his father George, George’s sister Sally, and
Sally’s daughter, Mary.

==> thru 4 of cousin g-1,f-2,f-5,f-6
==> activation 0 cousin g-1,f-2,f-5,f-6

Executing this rule asserts the cousin relationship between
John and Mary:

==> f-7 (cousin John Mary)

which matches the second condition of the first rule and
joins with the fact that John has freckles to match the first two
conditions of that rule:

==> thru 2 of cousins-may-inherit-trait

From which point, asserting that Mary has freckles
activates the rule, thereby leading to the assertion the freckles
may be inherited.

Conclusion
By supporting automatic generation and maintenance of

goalsacross multiple rules with many potential causes foreach
goal to exist and by allowing each goal to represent literal and
universally quantified values which constrain the facts that
could satisfy any given goal to a subset of all possible facts
which has a higher probability of furthering problem solving,
Eclipse allows data-driven rule technology, which is the only
practical technology for rule-based programming and the
implementation of expert systems, to perform logical
reasoning. Moreover, the software engineering, maintenance,
extensibility, and performance characteristics of rule-based
programs afforded by reduced coding and interpretation of
redundant, potentially disjunctive, combinations of patterns
within many rules is also considerable. Finally, the resulting
programs are simply much easier to understand since they
make explicit the high-level knowledge which would
otherwise be encoded implicitly using more complicated, less
perspicuous, less efficient, and less maintainable
combinations of patterns across many rules.


