Commercial Intelligence Rotating Header Image

Natural Language

Character by character sentiment

This is a great page on language modeling with an awesome graphic and commentary on its learned “sentiment neuron”.

Simply Smarter Intelligent Agents

Deep learning can produce some impressive chatbots, but they are hardly intelligent.  In fact, they are precisely ignorant in that they do not think or know anything.

More intelligent dialog with an artificially intelligent agent involves both knowledge and thinking.  In this article, we educate an intelligent agent that reasons to answer questions.

(more…)

Problems with Probabilistic Parsing

We are using statistical techniques to increase the automation of logical and semantic disambiguation, but nothing is easy with natural language.

Here is the Stanford Parser (the probabilistic context-free grammar version) applied to a couple of sentences.  There is nothing wrong with the Stanford Parser!  It’s state of the art and worthy of respect for what it does well.

(more…)

Confessions of a production rule vendor (part 2)

Going on 5 years ago, I wrote part 1.  Now, finally, it’s time for the rest of the story.

(more…)

Simply Logical English

This is not all that simple of an article, but it walks you through, from start to finish, how we get from English to logic. In particular, it shows how English sentences can be directly translated into formal logic for use with in automated reasoning with theorem provers, logic programs as simple as Prolog, and even into production rule systems.

There is a section in the middle that is a bit technical about the relationship between full logic and more limited systems (e.g., Prolog or production rule systems). You don’t have to appreciate the details, but we include them to avoid the impression of hand-waving

The examples here are trivial. You can find many and more complex examples throughout Automata’s web site.

Consider the sentence, “A cell has a nucleus.”:

(more…)

Natural Intelligence

Deep natural language understanding (NLU) is different than deep learning, as is deep reasoning.  Deep learning facilities deep NLP and will facilitate deeper reasoning, but it’s deep NLP for knowledge acquisition and question answering that seems most critical for general AI.  If that’s the case, we might call such general AI, “natural intelligence”.

Deep learning on its own delivers only the most shallow reasoning and embarrasses itself due to its lack of “common sense” (or any knowledge at all, for that matter!).  DARPA, the Allen Institute, and deep learning experts have come to their senses about the limits of deep learning with regard to general AI.

General artificial intelligence requires all of it: deep natural language understanding[1], deep learning, and deep reasoning.  The deep aspects are critical but no more so than knowledge (including “common sense”).[2] (more…)

Iterative Disambiguation

In a prior post we showed how extraordinarily ambiguous, long sentences can be precisely interpreted. Here we take a simpler look upon request.

Let’s take a sentence that has more than 10 parses and configure the software to disambiguate among no more than 10.

Once again, this is a trivial sentence to disambiguate in seconds without iterative parsing!

The immediate results might present:

Suppose the intent is not that the telescope is with my friend, so veto “telescope with my friend” with a right-click.

(more…)

“Only full page color ads can run on the back cover of the New York Times Magazine.”

A decade or so ago, we were debating how to educate Paul Allen’s artificial intelligence in a meeting at Vulcan headquarters in Seattle with researchers from IBM, Cycorp, SRI,  and other places.

We were talking about how to “engineer knowledge” from textbooks into formal systems like Cyc or Vulcan’s SILK inference engine (which we were developing at the time).   Although some progress had been made in prior years, the onus of acquiring knowledge using SRI’s Aura remained too high and the reasoning capabilities that resulted from Aura, which targeted University of Texas’ Knowledge Machine, were too limited to achieve Paul’s objective of a Digital Aristotle.  Unfortunately, this failure ultimately led to the end of Project Halo and the beginning of the Aristo project under Oren Etzioni’s leadership at the Allen Institute for Artificial Intelligence.

At that meeting, I brought up the idea of simply translating English into logic, as my former product called “Authorete” did.  (We renamed it before Haley Systems was acquired by Oracle, prior to the meeting.)

(more…)

“I don’t own a TV set. I would watch it.”

The following excerpt is from Hobbs, Jerry R. “Toward a useful concept of causality for lexical semantics.” Journal of Semantics 22.2 (2005): 181-209.

(more…)

Are vitamins subject to sales tax in California?

What is the part of speech of “subject” in the sentence:

  • Are vitamins subject to sales tax in California?

Related questions might include:

  • Does California subject vitamins to sales tax?
  • Does California sales tax apply to vitamins?
  • Does California tax vitamins?

Vitamins is the direct object of the verb in each of these sentences, so, perhaps you would think “subject” is a verb in the subject sentence…

(more…)