Commercial Intelligence Rotating Header Image

knowledge acquisition

Simply Smarter Intelligent Agents

Deep learning can produce some impressive chatbots, but they are hardly intelligent.  In fact, they are precisely ignorant in that they do not think or know anything.

More intelligent dialog with an artificially intelligent agent involves both knowledge and thinking.  In this article, we educate an intelligent agent that reasons to answer questions.

(more…)

Confessions of a production rule vendor (part 2)

Going on 5 years ago, I wrote part 1.  Now, finally, it’s time for the rest of the story.

(more…)

Natural Intelligence

Deep natural language understanding (NLU) is different than deep learning, as is deep reasoning.  Deep learning facilities deep NLP and will facilitate deeper reasoning, but it’s deep NLP for knowledge acquisition and question answering that seems most critical for general AI.  If that’s the case, we might call such general AI, “natural intelligence”.

Deep learning on its own delivers only the most shallow reasoning and embarrasses itself due to its lack of “common sense” (or any knowledge at all, for that matter!).  DARPA, the Allen Institute, and deep learning experts have come to their senses about the limits of deep learning with regard to general AI.

General artificial intelligence requires all of it: deep natural language understanding[1], deep learning, and deep reasoning.  The deep aspects are critical but no more so than knowledge (including “common sense”).[2] (more…)

Dictionary Knowledge Acquisition

The following is motivated by Section 6359 of the California Sales and Use Tax.  It demonstrates how knowledge can be acquired from dictionary definitions:

Here, we’ve taken a definition from WordNet and prefixed it with the word followed by a colon and parsed it using the Linguist.

(more…)

Knowledge acquisition using lexical and semantic ontology

In developing a compliance application based on the institutional review board policies of John Hopkins’ Dept. of Medicine, we have to clarify the following sentence:

  • Projects involving drugs or medical devices other than the use of an approved drug or medical device in the course of medical practice and projects whose data will be submitted to or held for inspection by the FDA will not be exempt from JHM IRB review UNLESS that use falls within the Emergency Use provisions of 21 CFR 56.102 (d).

As you can see, there are a number of compound words and acronyms, as well as references to the Code of Federal Regulations that need to be defined or recognized to understand this sentence.  (more…)

Deep question answering: Watson vs. Aristotle

At the SemTech conference last week, a few companies asked me how to respond to IBM’s Watson given my involvement with rapid knowledge acquisition for deep question answering at Vulcan.  My answer varies with whether there is any subject matter focus, but essentially involves extending their approach with deeper knowledge and more emphasis on logical in additional to textual entailment.

Today, in a discussion on the LinkedIn NLP group, there was some interest in finding more technical details about Watson.  A year ago, IBM published the most technical details to date about Watson in the IBM Journal of Research and Development.  Most of those journal articles are available for free on the web.  For convenience, here are my bookmarks to them.

Semantic Technology & Business Conference (SemTechBiz)

Benjamin Grosof and I will be presenting the following review of recent work at Vulcan towards Digital Aristotle as part of Project Halo at SemTechBiz in San Francisco the first week of June.

Acquiring deep knowledge from text

We show how users can rapidly specify large bodies of deep logical knowledge starting from practically unconstrained natural language text.

English sentences are semi-automatically interpreted into  predicate calculus formulas, and logic programs in SILK, an expressive knowledge representation (KR) and reasoning system which tolerates practically inevitable logical inconsistencies arising in large knowledge bases acquired from and maintained by distributed users possessing varying linguistic and semantic skill sets who collaboratively disambiguate grammar, logical quantification and scope, co-references, and word senses.

The resulting logic is generated as Rulelog, a draft standard under W3C Rule Interchange Format’s Framework for Logical Dialects, and relies on SILK’s support for FOL-like formulas, polynomial-time inference, and exceptions to answer questions such as those found in advanced placement exams.

We present a case study in understanding cell biology based on a first-year college level textbook.

Understanding English promotes better policies and requirements

Capturing some policies from a publication by the Health and Human Services department recently turned up the following….
It’s probably the case that there are more specific lists than just “some list” or “any list”, as suggested below.
This is a good thing about applying deep natural language understanding to policy statements.  It helps you say precisely what you mean, even if you are not using a rule or logic engine, but just trying to articulate your policies or requirements clearly and precisely.

HHS on expedited review

The $50 Business Rule

Work on acquiring knowledge about science has estimated the cost of encoding knowledge in question answering or problem solving systems at $10,000 per page of relevant textbooks. Regrettably, such estimates are also consistent with the commercial experience of many business rules adopters. The cost of capturing and automating hundreds or thousands of business rules is typically several hundred dollars per rule. The labor costs alone for a implementing several hundred rules too often exceed $100,000.

The fact that most rule adopters face costs exceeding $200 per rule is even more discouraging when this cost does not include the cost of eliciting or harvesting functional requirements or policies but is just the cost of translating such content into the more technical expressions understood by business rules management systems (BRMS) or business rule engines (BRE).

I recommend against adopting any business rule approach that cannot limit the cost of automating elicited or harvested content to less than $100 per rule given a few hundred rules. In fact, Automata provides fixed price services consistent with the following graph using an approach similar to the one I developed at Haley Systems.

Cost per Harvested or Elicited Rule

(more…)