Background for our Semantic Technology 2013 presentation

In the spring of 2012, Vulcan engaged Automata for a knowledge acquisition (KA) experiment.  This article provides background on the context of that experiment and what the results portend for artificial intelligence applications, especially in the areas of education.  Vulcan presented some of the award-winning work referenced here at an AI conference, including a demonstration of the electronic textbook discussed below.  There is a video of that presentation here.  The introductory remarks are interesting but not pertinent to this article.

Background on Vulcan’s Project Halo

Background on Vulcan's Project Halo

From 2002 to 2004, Vulcan developed a Halo Pilot that could correctly answer between 30% and 50% of the questions on advanced placement (AP) tests in chemistry.  The approaches relied on sophisticated approaches to formal knowledge representation and expert knowledge engineering.  Of three teams, Cycorp fared the worst and SRI fared the best in this competition.  SRI’s system performed at the level of scoring a 3 on the AP, which corresponds to earning course credit at many universities.  The consensus view at that time was that achieving a score of 4 on the AP was feasible with limited additional effort.  However, the cost per page for this level of performance was roughly $10,000, which needed to be reduced significantly before Vulcan’s objective of a Digital Aristotle could be considered viable.

Continue reading “Background for our Semantic Technology 2013 presentation”

SBVR in OWL

In preparation for generating RIF and SBVR from the Linguist, we have produced an OWL ontology for the pertinent aspects of the SBVR specification.  We hope that this is helpful to others and would sincerely appreciate any corrections or comments on how to improve it.

Paul

Harvesting business rules from the IRS

Does your business have logic that is more or less complicated than filing your taxes?

Most business logic is at least as complicated.  But most business rule metaphors are not up to expressing tax regulations in a simple manner.  Nonetheless, the tax regulations are full of great training material for learning how to analyze and capture business rules.

For example, consider the earned income credit (EIC) for federal income tax purposes in the United States.  This tutorial uses the guide for 2003, which is available here. There is also a cheat sheet that attempts to simplify the matter, available here. (Or click on the pictures.)

eitc-publication-596-fy-2003.jpgeitc-eligibility-checklist-for-tax-year-2003.jpg

What you will see here is typical of what business analysts do to clarify business requirements, policies, and logic.  Nothing here is specific to rule-based programming.  Continue reading “Harvesting business rules from the IRS”