Suggested questions: Inquire vs. Knewton

Knewton is an interesting company providing a recommendation service for adaptive learning applications.  In a recent post, Jonathon Goldman describes an algorithmic approach to generating questions.  The approach focuses on improving the manual authoring of test questions (known in the educational realm as “assessment items“).  It references work at Microsoft Research on the problem of synthesizing questions for a algebra learning game.

We agree that more automated generation of questions can enrich learning significantly, as has been demonstrated in the Inquire prototype.  For information on a better, more broadly applicable approach, see the slides beginning around page 16 in Peter Clark’s invited talk.

What we think is most promising, however, is understanding the reasoning and cognitive skill required to answer questions (i.e., Deep QA).  The most automated way to support this is with machine understanding of the content sufficient to answer the questions by proving answers (i.e., multiple choices) right or wrong, as we discuss in this post and this presentation.

Natural Language Leadership at the Allen Institute for Artificial Intelligence (AI2)

Orin Etzioni is a marvelous choice to lead the Allen Institute for AI (aka AI2).  The NL/ML path is the right path for scaling up the deep knowledge that Paul Allen’s vision of a Digital Aristotle requires.  You can read more about it below and here’s more background on the change in the direction and on some evidence that the path holds great promise.

Going beyond Siri and Watson: Microsoft co-founder Paul Allen taps Oren Etzioni to lead new Artificial Intelligence Institute

Affiliate Transactions covered by The Federal Reserve Act (Regulation W)

Benjamin Grosof, co-founder of Coherent Knowledge Systems, is also involved with developing a standard ontology for the financial services industry (i.e., FIBO).  In the course of working on FIBO, he is developing a demonstration of defeasible logic concerning Regulation W of the The Federal Reserve Act.  Regulation W specifies which transactions involving banks and their affiliates are prohibited under Section 23A of the Act.  In the course of doing this, there are various documents which are being captured within the Linguist™ platform.  This is a brief note of how those documents can be imported into the platform for curation into formal semantics and logic (as Benjamin and Coherent are doing). Continue reading “Affiliate Transactions covered by The Federal Reserve Act (Regulation W)”

Automatic Knowledge Graphs for Assessment Items and Learning Objects

As I mentioned in this post, we’re having fun layering questions and answers with explanations on top of electronic textbook content.

The basic idea is to couple a graph structure of questions, answers, and explanations into the text using semantics.  The trick is to do that well and automatically enough that we can deliver effective adaptive learning support.  This is analogous to the knowledge graph that users of Knewton‘s API create for their content.  The difference is that we get the graph from the content, including the “assessment items” (that’s what educators call questions, among other things).  Essentially, we parse the content, including the assessment items (i.e., the questions and each of their answers and explanations).   The result of this parsing is, as we’ve described elsewhere, precise lexical, syntactic, semantic, and logic understanding of each sentence in the content.  But we don’t have to go nearly that far to exceed the state of the art here. Continue reading “Automatic Knowledge Graphs for Assessment Items and Learning Objects”

Higher Education on a Flatter Earth

We’re collaborating on some educational work and came across this sentence in a textbook on finance and accounting:

  • All of these are potentially good economic decisions.

We use statistical NLP but assist with the ambiguities.  In doing this, we relate questions and answers and explanations to the text.

We also extract the terminology and produce a rich lexicalized ontology of the subject matter for pedagogical uses, assessment, and adaptive learning.

Here’s one that just struck me as interesting.  This is a case where the choice looks like it won’t matter much either way, but …

Continue reading “Higher Education on a Flatter Earth”

Artificially Intelligent Educational Technology

Over the last two years, machines have demonstrated their ability to read, listen, and understand English well enough to beat the best at Jeopardy!, answer questions via iPhone, and earn college credit on college advanced placement exams.  Today, Google, Microsoft and others are rushing to respond to IBM and Apple with ever more competent artificially intelligent systems that answer questions and support decisions.

What do such developments suggest for the future of education? Continue reading “Artificially Intelligent Educational Technology”

Helping people find clinical trials for which they are eligible

We are collaborating in the acquisition of knowledge concerning clinical trials.  Initially, we are looking at trials related to pancreatic cancer, such as A Study Using 18F-FAZA and PET Scans to Study Hypoxia in Pancreatic Cancer.

At http://clinicaltrials.gov, each trial is rendered as HTML for browsing from underlying XML files which can be downloaded.  Although we can parse the underlying XML into content for knowledge acquisition automatically, this article looks at acquiring the knowledge about an individual trial using the web presentation.  In particular, we look at the logical, semantic, and linguistic issues of understanding eligibility criteria. Continue reading “Helping people find clinical trials for which they are eligible”

US News & World Report: “The Education-Technology Revolution Is Coming”

This US News & World Report opinion is on the right track about the macro trend towards increasingly technology-enabled education:

But it also sounds like what I heard during the dot-com boom of the 1990s when a lot of companies—including Blackboard—began using technology to “disrupt” the education status quo. Since then we’ve made some important progress, but in many ways the classroom still looks the same as it did 100 years ago. So what’s different this time? Is all the talk just hype? Or are we really starting to see the beginnings of major change? I believe we are.

The comments about active learning are particularly on-target.  Delivering a textbook electronically or a course on-line is hardly the point. For example, textbooks and courses that understand their subject matter well enough to ask appropriate questions and that can explain the answers, assess the learner’s comprehension, guide them through the subject matter and accommodate their learning style dynamically are where the action will be soon enough.  This is not at all far-fetched or years off.  Look at Watson and some of these links to see how imminent such educational technology could be!

  1. Award-winning video of Inquire: An Intelligent Textbook
  2. Presentation  of Vulcan’s Digital Aristotle (PDF slides, streaming recording)
  3. article on Vulcan’s Digital Aristotle, Aura, Inquire, and Campbell’s Biology (PDF)

We’ve been working for several years on applications of artificial intelligence in education, as in Project Sherlock and this presentation. Please get in touch if you’re interested in advancing education along such lines.

Knowledge acquisition using lexical and semantic ontology

In developing a compliance application based on the institutional review board policies of John Hopkins’ Dept. of Medicine, we have to clarify the following sentence:

  • Projects involving drugs or medical devices other than the use of an approved drug or medical device in the course of medical practice and projects whose data will be submitted to or held for inspection by the FDA will not be exempt from JHM IRB review UNLESS that use falls within the Emergency Use provisions of 21 CFR 56.102 (d).

As you can see, there are a number of compound words and acronyms, as well as references to the Code of Federal Regulations that need to be defined or recognized to understand this sentence.  Continue reading “Knowledge acquisition using lexical and semantic ontology”