Automatic Knowledge Graphs for Assessment Items and Learning Objects

As I mentioned in this post, we’re having fun layering questions and answers with explanations on top of electronic textbook content.

The basic idea is to couple a graph structure of questions, answers, and explanations into the text using semantics.  The trick is to do that well and automatically enough that we can deliver effective adaptive learning support.  This is analogous to the knowledge graph that users of Knewton‘s API create for their content.  The difference is that we get the graph from the content, including the “assessment items” (that’s what educators call questions, among other things).  Essentially, we parse the content, including the assessment items (i.e., the questions and each of their answers and explanations).   The result of this parsing is, as we’ve described elsewhere, precise lexical, syntactic, semantic, and logic understanding of each sentence in the content.  But we don’t have to go nearly that far to exceed the state of the art here. Continue reading “Automatic Knowledge Graphs for Assessment Items and Learning Objects”

Higher Education on a Flatter Earth

We’re collaborating on some educational work and came across this sentence in a textbook on finance and accounting:

  • All of these are potentially good economic decisions.

We use statistical NLP but assist with the ambiguities.  In doing this, we relate questions and answers and explanations to the text.

We also extract the terminology and produce a rich lexicalized ontology of the subject matter for pedagogical uses, assessment, and adaptive learning.

Here’s one that just struck me as interesting.  This is a case where the choice looks like it won’t matter much either way, but …

Continue reading “Higher Education on a Flatter Earth”

Artificially Intelligent Educational Technology

Over the last two years, machines have demonstrated their ability to read, listen, and understand English well enough to beat the best at Jeopardy!, answer questions via iPhone, and earn college credit on college advanced placement exams.  Today, Google, Microsoft and others are rushing to respond to IBM and Apple with ever more competent artificially intelligent systems that answer questions and support decisions.

What do such developments suggest for the future of education? Continue reading “Artificially Intelligent Educational Technology”

Helping people find clinical trials for which they are eligible

We are collaborating in the acquisition of knowledge concerning clinical trials.  Initially, we are looking at trials related to pancreatic cancer, such as A Study Using 18F-FAZA and PET Scans to Study Hypoxia in Pancreatic Cancer.

At http://clinicaltrials.gov, each trial is rendered as HTML for browsing from underlying XML files which can be downloaded.  Although we can parse the underlying XML into content for knowledge acquisition automatically, this article looks at acquiring the knowledge about an individual trial using the web presentation.  In particular, we look at the logical, semantic, and linguistic issues of understanding eligibility criteria. Continue reading “Helping people find clinical trials for which they are eligible”

Knowledge acquisition using lexical and semantic ontology

In developing a compliance application based on the institutional review board policies of John Hopkins’ Dept. of Medicine, we have to clarify the following sentence:

  • Projects involving drugs or medical devices other than the use of an approved drug or medical device in the course of medical practice and projects whose data will be submitted to or held for inspection by the FDA will not be exempt from JHM IRB review UNLESS that use falls within the Emergency Use provisions of 21 CFR 56.102 (d).

As you can see, there are a number of compound words and acronyms, as well as references to the Code of Federal Regulations that need to be defined or recognized to understand this sentence.  Continue reading “Knowledge acquisition using lexical and semantic ontology”

Neat vs. Scruffy and Watson

Recently, John Sowa has commented on LinkedIn or in correspondence with some of us at Coherent Knowledge Systems on the old adage due to Shanks concerning the Neats. vs. the Scruffies.  The Neats want nice formal logics as the basis of artificial intelligence.  This includes anyone who prefers classical logic (e.g., Common Logic, RIF-BLD, or SBVR) or standard ontologies (e.g., OWL-DL) for representing knowledge and reasoning with it.  The Scruffies may use well-defined technology, but are not constrained by it.  They’ll do whatever they think works, now, whether or not it is a good long term solution and despite its shortcomings, as long as it can obtain immediate objectives.

Watson is scruffy.  It doesn’t try to understand or formally represent knowledge.  It combines a lot of effective technologies into an evidentiary framework that allows it to effectively “guess”.

Today, in response to continued discussion in the Natural Language Processing group on LinkedIn under the topic “This is Watson”, I’m posting the following presentation on Project Sherlock and the Linguist vs. Google and IBM.

Essentially, the neat approach is more viable today than ever.  So, chalk one up for the neats, including Dr. Sowa and Menno Mofait’s comment in that discussion.

During a presentation at CMU after winning the game show,, IBM admitted that in order to get the last leg of improvement needed to win Jeopardy!, they needed to do some “neat” ontological knowledge acquisition, too!

Deep question answering: Watson vs. Aristotle

At the SemTech conference last week, a few companies asked me how to respond to IBM’s Watson given my involvement with rapid knowledge acquisition for deep question answering at Vulcan.  My answer varies with whether there is any subject matter focus, but essentially involves extending their approach with deeper knowledge and more emphasis on logical in additional to textual entailment.

Today, in a discussion on the LinkedIn NLP group, there was some interest in finding more technical details about Watson.  A year ago, IBM published the most technical details to date about Watson in the IBM Journal of Research and Development.  Most of those journal articles are available for free on the web.  For convenience, here are my bookmarks to them.

Translating English into Logic using the Linguist

Now that the patent filings are done, we can discuss and show more about the Linguist…

The following link is a video that shows a sentence from Project Sherlock being translated from English into first-order logic using the patent-pending  Linguisttm software.

The hydrophobic ends of the lipids of a cell’s plasma membrane are oriented away from the cell’s cytoplasm.

This video was recorded in October, 2012.  More recent versions of the Linguist can render the logic in more ways, such as shown below:

A grammatically disambiguated and logically formalized English sentence using Automata Linguist

Background for our Semantic Technology 2013 presentation

In the spring of 2012, Vulcan engaged Automata for a knowledge acquisition (KA) experiment.  This article provides background on the context of that experiment and what the results portend for artificial intelligence applications, especially in the areas of education.  Vulcan presented some of the award-winning work referenced here at an AI conference, including a demonstration of the electronic textbook discussed below.  There is a video of that presentation here.  The introductory remarks are interesting but not pertinent to this article.

Background on Vulcan’s Project Halo

Background on Vulcan's Project Halo

From 2002 to 2004, Vulcan developed a Halo Pilot that could correctly answer between 30% and 50% of the questions on advanced placement (AP) tests in chemistry.  The approaches relied on sophisticated approaches to formal knowledge representation and expert knowledge engineering.  Of three teams, Cycorp fared the worst and SRI fared the best in this competition.  SRI’s system performed at the level of scoring a 3 on the AP, which corresponds to earning course credit at many universities.  The consensus view at that time was that achieving a score of 4 on the AP was feasible with limited additional effort.  However, the cost per page for this level of performance was roughly $10,000, which needed to be reduced significantly before Vulcan’s objective of a Digital Aristotle could be considered viable.

Continue reading “Background for our Semantic Technology 2013 presentation”