Benjamin Grosof and I will be presenting the following review of recent work at Vulcan towards Digital Aristotle as part of Project Halo at SemTechBiz in San Francisco the first week of June.
Acquiring deep knowledge from text
We show how users can rapidly specify large bodies of deep logical knowledge starting from practically unconstrained natural language text.
English sentences are semi-automatically interpreted into predicate calculus formulas, and logic programs in SILK, an expressive knowledge representation (KR) and reasoning system which tolerates practically inevitable logical inconsistencies arising in large knowledge bases acquired from and maintained by distributed users possessing varying linguistic and semantic skill sets who collaboratively disambiguate grammar, logical quantification and scope, co-references, and word senses.
The resulting logic is generated as Rulelog, a draft standard under W3C Rule Interchange Format’s Framework for Logical Dialects, and relies on SILK’s support for FOL-like formulas, polynomial-time inference, and exceptions to answer questions such as those found in advanced placement exams.
We present a case study in understanding cell biology based on a first-year college level textbook.